
REST

Silesian Ruby Users' Group
Szymon Nowak

April 27, 2009

Web services

Web services

Web services

what exactly are web services?

Web services

API for web applications

Web services

some examples:

• weather

• sport results

• stock market

Web services

a bit of history

Web services

Remote Procedure Call

Web services

XML-RPC

Web services

uses XML over HTTP

XML RPC sample request

<?xml version="1.0"?>

<methodCall>

<methodName>examples.getStateName</methodName>

<params>

<param>

<value><i4>40</i4></value>

</param>

</params>

</methodCall>

XML RPC sample response

<?xml version="1.0"?>

<methodResponse>

<params>

<param>

<value><string>South Dakota</string></value>

</param>

</params>

</methodResponse>

Web services

this evolved into

Web services

SOAP

Web services

Simple Object Access Protocol

Web services

this acronym was dropped with version 1.2 of the standard

• it was confused with SOA

• it's not that simple after all

Web services

uses XML over HTTP

SOAP sample request

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

<m:GetEndorsingBoarder xmlns:m="http://namespaces.snowboard-info.com">

<manufacturer>K2</manufacturer>

<model>Fatbob</model>

</m:GetEndorsingBoarder>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

SOAP sample response

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

<m:GetEndorsingBoarderResponse xmlns:m="http://namespaces.snowboard-info.com">

<endorsingBoarder>Chris Englesmann</endorsingBoarder>

</m:GetEndorsingBoarderResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Web services

services are de�ned using
Web Services Description Language

(WSDL)

WSDL sample

<?xml version="1.0"?>

<!-- root element wsdl:definitions defines set of related services -->
<wsdl:definitions name="EndorsementSearch"

targetNamespace="http://namespaces.snowboard-info.com"
xmlns:es="http://www.snowboard-info.com/EndorsementSearch.wsdl"
xmlns:esxsd="http://schemas.snowboard-info.com/EndorsementSearch.xsd"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<!-- wsdl:types encapsulates schema definitions of communication types; here using xsd -->
<wsdl:types>

<!-- all type declarations are in a chunk of xsd -->
<xsd:schema targetNamespace="http://namespaces.snowboard-info.com"
xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<!-- xsd definition: GetEndorsingBoarder [manufacturer string, model string] -->
<xsd:element name="GetEndorsingBoarder">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="manufacturer" type="string"/>
<xsd:element name="model" type="string"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

Web services

... about 100 lines of XML later ...

WSDL sample

<!-- wsdl:service names a new service "EndorsementSearchService" -->
<wsdl:service name="EndorsementSearchService">

<wsdl:documentation>snowboarding-info.com Endorsement Service</wsdl:documentation>

<!-- connect it to the binding "EndorsementSearchSoapBinding" above -->
<wsdl:port name="GetEndorsingBoarderPort"

binding="es:EndorsementSearchSoapBinding">

<!-- give the binding an network address -->
<soap:address location="http://www.snowboard-info.com/EndorsementSearch"/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

Web services

• lets tools create client APIs

• client developers see methods with parameters

Web services

WS-* speci�cations

• WS-Addressing

• WS-Security

• WS-Trust

• WS-SecureConversation

• WS-ReliableMessaging

• WS-AtomicTransaction

• WS-Coordination

• WS-Policy

• WS-MetadataExchange

• ...

Web services

service oriented design

Web services

• UserManager
• createUser(u:User)
• getUserDetails(id:ID)

• StatusManager
• submitStatus(u_id:ID, s:Status)
• getStatus(u_id:ID)

Web services

Cons of SOAP services:

• complex

• strong typing

• XML is not necessarily the best data format for the web

• non-uniform interface

• uses HTTP POST only

Web services

not everyone needs enterprisey and complex web services

Web services

you don't have to use SOAP

Web services

others don't

Web services

• Amazon Web Services - provides both
• 20% uses SOAP
• 80% uses REST

• Google Search API - deprecated SOAP in favor of REST

• Yahoo API - uses REST only

REST

REST

REST

REpresentational State Transfer

REST

introduced by Roy Fielding, who also worked on the following
speci�cations:

• URI

• HTTP

• HTML

REST

very short demo

REST

URI

REST

resources

REST

uniquely addressable using URIs

REST

http://localhost/users/1

REST

http://localhost/users/1/statuses/1

REST

http://localhost/users

REST

http://localhost/users/1/statuses

REST

HTTP

REST

CRUD

REST

ACTION

CREATE
READ
UPDATE
DELETE

REST

ACTION

CREATE
READ
UPDATE
DELETE

SQL

INSERT
SELECT
UPDATE
DELETE

REST

ACTION

CREATE
READ
UPDATE
DELETE

SQL

INSERT
SELECT
UPDATE
DELETE

HTTP

POST
GET
PUT
DELETE

REST

ACTION

CREATE
READ
UPDATE
DELETE

SQL

INSERT
SELECT
UPDATE
DELETE

HTTP

POST
GET
PUT
DELETE

REST

ACTION

CREATE
READ
UPDATE
DELETE

SQL

INSERT
SELECT
UPDATE
DELETE

HTTP

POST
GET
PUT
DELETE

REST

ACTION

CREATE
READ
UPDATE
DELETE

SQL

INSERT
SELECT
UPDATE
DELETE

HTTP

POST
GET
PUT
DELETE

REST

ACTION

CREATE
READ
UPDATE
DELETE

SQL

INSERT
SELECT
UPDATE
DELETE

HTTP

POST
GET
PUT
DELETE

REST

think of REST as a sentence:

• HTTP actions are verbs

• resources' URIs are nouns

REST

POST
GET
PUT

DELETE

http://localhost/users
http://localhost/users/1
http://localhost/users/1
http://localhost/users/1

REST

POST
GET
PUT

DELETE

http://localhost/users
http://localhost/users/1
http://localhost/users/1
http://localhost/users/1

REST

uniform interface to interact with resources

REST

POST
GET
PUT

DELETE

http://localhost/users/1/statuses
http://localhost/users/1/statuses/1
http://localhost/users/1/statuses/1
http://localhost/users/1/statuses/1

REST

resources can have many representations

REST

�Get XML representation of user with ID 1�

GET
GET

http://localhost/users/1.xml
Accept: application/xml http://localhost/users/1

REST

�Get JSON representation of user with ID 1�

GET
GET

http://localhost/users/1.json
Accept: application/json http://localhost/users/1

REST

�Get HTML representation of user with ID 1�

GET
GET

http://localhost/users/1.html
Accept: text/html http://localhost/users/1

REST

�Get vCard representation of user with ID 1�

GET
GET

http://localhost/users/1.vcf
Accept: text/x-vCard http://localhost/users/1

REST

REST is not a standard
it's a style of software architecture

REST in Rails

REST in Rails

REST in Rails

in Rails it's easier to build RESTful
than non-RESTful apps

REST in Rails

quick demo

REST in Rails

how does it work?

REST in Rails

REST actions

POST
GET
PUT
DELETE

REST in Rails

Rails actions

create
show
update
destroy
new
edit
index

REST in Rails

Rails actions

create
show
update
destroy
new
edit
index

REST in Rails

7 default actions

REST in Rails

Rails actions

create
show
update
destroy
index
new
edit

HTTP request

POST
GET
PUT
DELETE
GET
GET
GET

/users
/users/1
/users/1
/users/1
/users
/users/1/new
/users/1/edit

REST in Rails

how does Rails know how to map URI to an action?

REST in Rails

routes

con�g/routes.rb

ActionController::Routing::Routes.draw do |map|

map.resources :users

end

REST in Rails

generates mapping for 7 default actions
for user resource

REST in Rails

generates helper methods for 7 default actions
for user resource

REST in Rails

Rails actions

create
show
update
destroy
index
new
edit

URI

/users
/users/1
/users/1
/users/1
/users
/users/1/new
/users/1/edit

helpers

users_path
user_path(1)
user_path(1)
user_path(1)
users_path
new_user_path
edit_user_path(1)

REST in Rails

resource representations

REST in Rails

respond_to

app/controllers/users_controller.rb

class UsersController < ApplicationController

GET /users/1

GET /users/1.xml

def show

@user = User.find(params[:id])

respond_to do |format|

format.html # show.html.erb

format.xml { render :xml => @user }

end

end

end

Consuming RESTful web services

Consuming RESTful web services

Consuming RESTful web services

system tools

• cURL

Consuming RESTful web services

we get raw XML/JSON response
that we still need to parse

Consuming RESTful web services

Ruby libraries

• HTTParty

• ActiveResource

Consuming RESTful web services

HTTParty

Consuming RESTful web services

for RESTful and RESTful-like web services

Consuming RESTful web services

what does it do for you:

• sends request

• processes response

HTTParty client example

class TwitterCloneClient

include HTTParty

base_uri "localhost:3000"

format :xml

end

TwitterCloneClient.get("/statuses/1")

#{"status"=>{

"id"=>1,

"body"=>"First message",

"created_at"=>Wed Apr 26 20:38:19 UTC 2009,

"user_id"=>1...}

#}

Consuming RESTful web services

demo

Consuming RESTful web services

ActiveResource

Consuming RESTful web services

for strictly RESTful web services

Consuming RESTful web services

• part of Rails core

• works best with Rails apps

• provides ActiveRecord like API to RESTful web services

Consuming RESTful web services

what does it do for you:

• forms request URI

• sends request

• processes response

• provides OO access to response

Consuming RESTful web services

how to write a client?

ActiveResource client example

class Status < ActiveResource::Base

self.site = "http://localhost:3000/"

end

Find

status = Status.find(:first)

status.body # => "First message"

ActiveResource client example

Create

status = Status.create(:body => "New messsage")

Update

status.body = "Updated"

status.save

Delete

status.destroy

Consuming RESTful web services

demo

